Decision Problems in Algebra (FCUL Summer School)

António Malheiro

CMA/FCT Universidade Nova de Lisboa

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Acknowledgement: This work was supported by CMA within the projects UID/MAT/00297/2013 PTDC/MHC-FIL/2583/2014 financed by 'Fundação para a Ciência e a Tecnologia'

June 2018

Outline

Fundamental Dehn's Decision Problems

Undecidability

Related topics

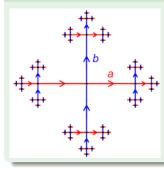
- Hyperbolic groups.
- Abstract reduction systems.
- Knuth–Bendix completion procedure.
- Gröbner basis.

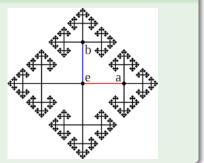
The Cayley graph of a group

Let G be a group with generators A. The Cayley graph $\Gamma(G, A)$ is the coloured directed graph with:

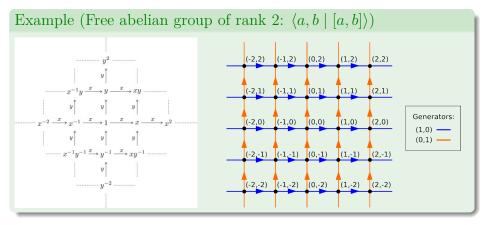
- \bullet vertices: G
- colors: A
- edges $g \xrightarrow{a} ga$

Example (Free group of rank 2: $\langle a, b | \rangle_{gr}$)



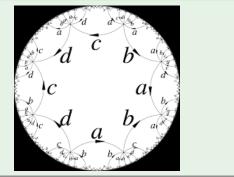


The Cayley graph of a group



The Cayley graph of a group

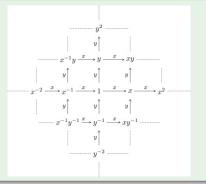
Example (Fundamental group of double torus: $\langle a, b, c, d \mid [a, b][c, d] \rangle$)



In a Cayley graph Γ of a group we can define:

- distance between g and h minimal number of edges of a path in Γ connecting g and h;
- geodesic between g and h a shortest path in Γ connecting g and h.

Example (Free abelian group of rank 2: $\langle a, b \mid [a, b] \rangle$)



António Malheiro

Decision Problems in Algebra

Let Γ be the Cayley graph of a group.

Geodesic triangle

A geodesic triangle Δ in Γ , is a triangle where each side is a geodesic.



δ -hyperbolic

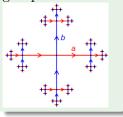
 Γ is said to be δ -hyperbolic (for $\delta > 0$) if for every geodesic triangle Δ in Γ , each edge in Δ lies in the δ -neighborhood of the two other paths.

Word hyperbolic group

A finitely generated group G is said to be hyperbolic if the Cayley graph associated to some (and hence any) generating set is δ -hyperbolic for some δ .

Example

Finite groups; free groups.



Non-example

Free abelian group of rank 2, \mathbb{Z}^2 .

Mikhail Gromov

Properties of hyperbolic groups

- Finitely presented;
- Have solvable word and conjugacy problems.

Characterizations:

For a f.p. group G, TFAE:

- G is hyperbolic;
- G has a Dehn's algorithm;
- G has linear Dehn function.

Recall: A group G on the generators A has a Dehn algorithm if:

- there exists a finite list of pairs $(u_1, v_1), \ldots, (u_n, v_n)$ with $|u_i| > |v_i|$; and
- if w is a reduced word representing the identity, then w contains some u_i as a factor.

Abstract Reduction Systems (ARS)

An ARS is a pair (X, \rightarrow) where;

• X is a set;

• \rightarrow is a binary relation on X.

We write:

•
$$a \to b$$
 to indicate that $(a, b) \in \rightarrow$;

•
$$a \xrightarrow{*} b$$
 for $a = a_1 \rightarrow a_2 \rightarrow \cdots \rightarrow a_n = b$;

Two fundamental properties:

Termination: for every $a \in X$ there is no infinite sequence

$$a \to a_1 \to a_2 \to \dots \to a_n \to \dots$$

Confluence: whenever $a \xrightarrow{*} b$ and $a \xrightarrow{*} c$, then $b \xrightarrow{*} d$ and $c \xrightarrow{*} d$, for some d; pictorially

Abstract Reduction Systems (ARS)

We write:

- $a \leftrightarrow b$ if either $a \rightarrow b$ or $a \leftarrow b$;
- $a \stackrel{*}{\leftrightarrow} b$ if $a = a_1 \leftrightarrow a_2 \leftrightarrow \cdots \leftrightarrow a_n = b$;
- a is said irreducible if there is no b ∈ X s.t. a → b; a ↓ denotes the unique (if exists) irreducible s.t. a ⇔ a ↓.

Theorem

If \rightarrow is terminating and confluent, then $x \stackrel{*}{\leftrightarrow} y \Leftrightarrow x \downarrow = y \downarrow$.

Locally confluent if $x \to y_1$ and $x \to y_2$ implies that $y_1 \xrightarrow{*} z$ and $y_2 \xrightarrow{*} z$, for some z, pictorially

$$\begin{array}{c} x & y_2 \\ & \\ y_1 & z \end{array}$$

Newman's Lemma

A terminating relation is confluent if it is locally confluent.

António Malheiro

Decision Problems in Algebra

June 2018 11 / 14

Word problem for D_3

Consider the presentation of D_3 : $\langle a, b \mid a^3 \to 1, b^2 \to 1, ab \to ba^2 \rangle$.

The word problem for D_3 is decidable

For a word w in the generators $\{a, b\}$:

- Compute the reduced word \overline{w} such that $w \xrightarrow{*} \overline{w}$;
- **2** Check if \overline{w} is the empty word.

This algorithm works because \rightarrow is ...

- terminating;
- locally confluent.

To check termination: note that if $u \to v$ then ...

() number of b's in u is greater than in v; or is equal and

2
$$u = u_0 b u_1 b \dots b u_n$$
 and $v = v_0 v u_1 b \dots b v_n$; and thus $|u_0| > |v_0|$; or $u_0 = v_0$ and $|u_1| > |v_1|$; or; or $u_0 = v_0, \dots, u_{n-1} = v_{n-1}$ and $|u_n| > |v_n|$.

Word problem for D_3

To check local confluence:

It is enough to check if all critical pairs are resolved.

Critical pair The pair of words resulting from a single step reduction from an overlap between left-hand sides of the relations.

Example (Critical pairs in $a^3 \rightarrow 1, b^2 \rightarrow 1, ab \rightarrow ba^2$)

Overlaps: $a^3 b = a^2 ab$ and $ab b = a b^2$; 1st critical pair: $\{b, a^2ba^2\}$ since $a^3b \to b$ and $a^3b \to a^2ba^2$. 2nd critical pair: $\{ba^2b, a\}$ since $ab^2 \to ba^2b$ and $ab^2 \to a$. 1st c.p. is resolved: $a^2ba^2 \to aba^4 \to ba^6 \stackrel{*}{\to} b$. 2nd c.p. is resolved: $ba^2b \to baba^2 \to b^2a^4 \to a^4 \to a$.

Gröbner bases

Buchberger Algorithm

```
Data: A finite set F of polynomials from \mathbb{K}[X_1, \ldots, X_n]
Result: A Gröbner bases for the ideal generated by F.
G := F:
C := \{\{g, h\} : g, h \in G, g \neq h\};\
while C \neq \emptyset do
    remove a pair \{g, h\} from C;
    k := \overline{\operatorname{spol}(q,h)}^G:
    if k \neq 0 then
        Add all pairs \{k, l\} with l \in G to C;
        G := G \cup \{k\};
    end
    return G:
end
```