Decision Problems in Algebra
 (FCUL Summer School)

António Malheiro

Cinct.unl

CMA/FCT
Universidade Nova de Lisboa
FCT Fundação para a Ciência e a Tecnologia
MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR
Acknowledgement:
This work was supported by CMA within the projects
UID/MAT/00297/2013
PTDC/MHC-FIL/2583/2014
financed by 'Fundação para a Ciência e a Tecnologia'

June 2018

Outline

Fundamental Dehn's Decision Problems

- Groups; presentations;
- The word problem;
- Dehn's Algorithm.

Undecidability
Related topics

Groups (The Dihedral Group)

D_{n} - the group of symmetries of a regular polygon of n sides;

$$
\begin{array}{ll}
& (x y) z=x(y z) \\
\text { Group: } & 1 x=x \\
& x^{-1} x=1 \\
\hline \hline
\end{array}
$$

Rotations: $a=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), a^{2}=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)$, and $i d$;
Reflections: $b=(23), b a=(12), b a^{2}=(13)$.

- D_{3} is generated by $\{a, b\}$; we write $D_{3}=\langle a, b\rangle$;
- Relations in $D_{3}: a^{3}=1, b^{2}=1,(b a)^{2}=1$; any other relation in D_{3} is a consequence of these: for example

$$
\text { Is } a b \stackrel{?}{=} b a^{2} . \text { YES }: a b=b^{2} a b a^{3}=b(b a b a) a^{2}=b a^{2}
$$

- D_{3} is presented by $\left\langle a, b \mid a^{3}=1, b^{2}=1,(b a)^{2}=1\right\rangle$.

Group presentations:

The Dihedral group D_{3} can be given by the presentations:

$$
\begin{gathered}
\left\langle a, b \mid a^{3}=1, b^{2}=1,(b a)^{2}=1\right\rangle \\
\left\langle a, b \mid a^{3}=1, b^{2}=1, a b=b a^{2}\right\rangle
\end{gathered}
$$

in the alphabet $\{a, b\}$. (Finite sequences of letters from the alphabet (for example, aababaabb) are called words).

If we consider symbols a^{-1} and b^{-1}, D_{3} can also be given by:
$\left\langle a, a^{-1}, b, b^{-1} \mid a^{3}=1, b^{2}=1,(b a)^{2}=1, a a^{-1}=a^{-1} a=1, b b^{-1}=b^{-1} b=1\right\rangle$
In this case we can simply write:

$$
\left\langle a, b \mid a^{3}, b^{2},(b a)^{2}\right\rangle_{g r}
$$

assuming the relations $a a^{-1}=a^{-1} a=1$ and $b b^{-1}=b^{-1} b=1$.

Finitely presented groups

Example (The free group on 2 generators)

$$
F_{2}=\langle a, b \mid\rangle_{g r} .
$$

Example (The Symmetric group on three letters)

$$
S_{3}=D_{3}=\left\langle a, b \mid a^{3}, b^{2},(b a)^{2}\right\rangle
$$

Example (The free abelian group on 2 generators)

$$
\mathbb{Z}^{2}=\langle a, b \mid a b=b a\rangle_{g r}=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle
$$

Think of a as $(1,0)$ and b as $(0,1)$.
Definition
A group G is finitely presented (f.p.) if it is given by a finite presentation

$$
\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle
$$

The word problem

Given a f.p. group G, we have

Word problem for G

Find an algorithm with
input: a word w in the generators of G
output: YES or NO, according to whether w represents the identity in G.

More difficult:
The uniform word problem
Find an algorithm with
input: a f.p. group G, and a word w in the generators of G
output: YES or NO, according to whether w represents the identity in G.

Independence

The word problem is independent of the given f.p.
G has solvable word problem with respect to $\left\langle a_{1}, \ldots, a_{n} \mid r_{1}, \ldots, r_{m}\right\rangle$ iff
G has solvable word problem with respect to $\left\langle x_{1}, \ldots, x_{k} \mid s_{1}, \ldots, s_{p}\right\rangle$.

Proof: Tietze transformations

Consider the group K given by the presentation $\left\langle a, b \mid a b a b^{-1}=1\right\rangle$. We can transform the presentation by adding generators

$$
\left\langle a, b, x, y \mid a b a b^{-1}=1, x=a b, y=b^{-1}\right\rangle
$$

Introducing/deleting relations which are consequence of the others:

$$
\left\langle a, b, x, y \mid x^{2} y^{2}=1, x=a b, y=b^{-1}, a=x y\right\rangle
$$

Also delete generators: $\left\langle x, y \mid x^{2} y^{2}=1\right\rangle_{g r}$.

Word problem for the free group $F_{n}:\left\langle a_{1}, \ldots, a_{n} \mid\right\rangle_{g r}$.

The word problem for F_{n} is decidable
For a word w in the generators:
(1) Compute the reduced word \bar{w};
(2) Check if \bar{w} is the empty word.

Example (The free group on 2 generators)
Let $w=a b a b^{-1} a^{-1} a b a^{-1} b$.
Iteratively delete factors of the form $a a^{-1}, a^{-1} a, b b^{-1}$ and $b^{-1} b$. We get

$$
w=a b a b^{-1} \underline{a}^{-1} a b a^{-1} b \rightarrow a b a \underline{b^{-1} b} a^{-1} b \rightarrow a b \underline{a a^{-1}} b \rightarrow a b b,
$$

and so $\bar{w}=a b b$ is reduced.
Since $a b b \neq 1$ we conclude that w does not represent the identity.

Word problem for D_{3}

Consider the presentation of $D_{3}: \quad\left\langle a, b \mid a^{3} \rightarrow 1, b^{2} \rightarrow 1, a b \rightarrow b a^{2}\right\rangle$.
The word problem for D_{3} is decidable
For a word w in the generators $\{a, b\}$:
(1) Compute the reduced word \bar{w} such that $w \xrightarrow{*} \bar{w}$;
(2) Check if \bar{w} is the empty word.

Example (The free group on 2 generators)

Let $w=a^{2} b^{2} a$.
Compute $\quad w=a^{2} \underline{b^{2}} a \rightarrow a^{3} \rightarrow 1$, or
$w=a \underline{a b} b a \rightarrow \underline{a b} a^{2} b a \rightarrow b a^{4} b a \rightarrow \underline{b a b} a \rightarrow \underline{b^{2}} a^{3} \rightarrow a^{3} \rightarrow 1$,
so $\bar{w}=1$, and we conclude that w represents the identity.
Why does it work? See last session.

Fundamental Dehn's decision problems

In 1911 Dehn proposed the following decision problems for f.p. groups:

The Word Problem

The Conjugacy Problem

Find an algorithm with
input: words x, y in the generators of G
output: YES or NO, according to whether x and y are conjugate in G (i.e., exists

Max Dehn

The Isomorphism Problem
Find an algorithm with
input: f.p. $\langle X \mid R\rangle$ of G, and $\langle Y \mid S\rangle$ of H;
output: YES or NO, according to whether G and H are isomorphic.

Dehn's motivation: surface groups

The fundamental group $\pi_{1}(T)$ of a topological space T is an invariant.

$\pi_{1}(T)=\left\{[\gamma]: \gamma\right.$ is a loop with base point $\left.x_{0}\right\}$;
[γ] - classes of homotopic paths;
Paths are homotopic if one can be deformed to the other.
word problem \Leftrightarrow whether or not a loop in T is contractible conjugacy problem \Leftrightarrow whether or not two loops are homotopic

The fundamental group of the Torus

Polygonal representation of the Torus:

The fundamental group of the torus $\pi_{1}\left(\mathbb{T}^{2}\right)$ is presented by $\langle a, b \mid[a, b]\rangle$, where $[a, b]=a b a^{-1} b^{-1}$.
$\pi_{1}\left(\mathbb{T}^{2}\right)=\mathbb{Z}^{2}$ has solvable word problem
Let $w=b a b a^{-1} b a a b^{-3} a^{-2}$. Since $[a, b]=1 \Leftrightarrow a b=b a$, then $w=\left(a a^{-1} a a a^{-2}\right)\left(b b b b^{-3}\right)=1$.

Surface groups

An orientable compact surface of genus $g \geq 1$ has fundamental group given by a presentation:

$$
\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g} \mid\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right\rangle
$$

A nonorientable compact surface of genus $g \geq 1$ has fundamental group given by a presentation:

$$
\left\langle a_{1}, \ldots, a_{g} \mid a_{1}^{2} \ldots a_{g}^{2}\right\rangle
$$

Example (The fundamental group of the Klein bottle)

We have seen that $\left\langle a, b \mid a b a b^{-1}=1\right\rangle$ and $\left\langle x, y \mid x^{2} y^{2}=1\right\rangle_{g r}$ define the same group.

Dehn's algorithm

Theorem (Dehn 1912)

For any surface group of genus $g \geq 2$ there exists a Dehn Algorithm.
A group G on the generators A has a Dehn algorithm if:

- there exists a finite list of pairs $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right)$ with $\left|u_{i}\right|>\left|v_{i}\right|$; and
- if w is a reduced word representing the identity, then w contains some u_{i} as a factor.

Dehn's algorithm

Dehn's algorithm to solve the word problem for G
Data: a word w in the generators of G
Result: YES (if $w=1$) or NO (if $w \neq 1$)
while w is not the trivial word do
freely reduce w;
if some u_{i} is a factor of w then replace that instance by v_{i};
else
return NO;
end
end return YES;

Dehn's algorithm: example

Consider the double torus:

with fundamental group D given by $\langle a, b, c, d \mid[a, b][c, d]\rangle$.
The set Δ of all "cyclic permutations" of $[a, b][c, d]$ is a Dehn Algorithm for D.
For example

$$
w=a^{2} b^{-1}\left(a^{-1} d c d^{-1} c^{-1}\right)^{2} b \rightarrow a^{2} b^{-1}\left(b a^{-1} b^{-1}\right)^{2} b
$$

and $\overline{a^{2} b^{-1}\left(b a^{-1} b^{-1}\right)^{2} b}=1$.

