Decision Problems in Algebra (FCUL Summer School)

António Malheiro

CMA/FCT Universidade Nova de Lisboa

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

Acknowledgement: This work was supported by CMA within the projects UID/MAT/00297/2013 PTDC/MHC-FIL/2583/2014 financed by 'Fundação para a Ciência e a Tecnologia'

June 2018

Outline

Fundamental Dehn's Decision Problems

- Groups; presentations;
- The word problem;
- Dehn's Algorithm.

Undecidability

Related topics

Groups (The Dihedral Group)

 D_n - the group of symmetries of a regular polygon of n sides;

	(xy)z = x(yz)
Group:	1 x = x
	$x^{-1} x = 1$

Rotations: $a = (1 \ 2 \ 3), a^2 = (1 \ 3 \ 2), and id;$ Reflections: $b = (2 \ 3), ba = (1 \ 2), ba^2 = (1 \ 3).$

- D_3 is generated by $\{a, b\}$; we write $D_3 = \langle a, b \rangle$;
- Relations in D₃: a³ = 1, b² = 1, (ba)² = 1; any other relation in D₃ is a consequence of these: for example

Is
$$ab \stackrel{?}{=} ba^2$$
. YES : $ab = b^2aba^3 = b(baba)a^2 = ba^2$.

•
$$D_3$$
 is presented by $\langle a, b \mid a^3 = 1, b^2 = 1, (ba)^2 = 1 \rangle$.

Group presentations:

The Dihedral group D_3 can be given by the presentations:

$$\langle a, b \mid a^3 = 1, \ b^2 = 1, \ (ba)^2 = 1 \rangle$$

 $\langle a, b \mid a^3 = 1, \ b^2 = 1, \ ab = ba^2 \rangle$

in the alphabet $\{a, b\}$. (Finite sequences of letters from the alphabet (for example, *aababaabb*) are called words).

If we consider symbols a^{-1} and b^{-1} , D_3 can also be given by:

$$\langle a, a^{-1}, b, b^{-1} \mid a^3 = 1, b^2 = 1, (ba)^2 = 1, aa^{-1} = a^{-1}a = 1, bb^{-1} = b^{-1}b = 1$$

In this case we can simply write:

$$\langle a, b \mid a^3, b^2, (ba)^2 \rangle_{gr}$$

assuming the relations $aa^{-1} = a^{-1}a = 1$ and $bb^{-1} = b^{-1}b = 1$.

Finitely presented groups

Example (The free group on 2 generators)

$$F_2 = \langle a, b \mid \rangle_{gr}.$$

Example (The Symmetric group on three letters)

$$S_3 = D_3 = \langle a, b \mid a^3, b^2, (ba)^2 \rangle.$$

Example (The free abelian group on 2 generators)

$$\mathbb{Z}^2 = \langle a, b \mid ab = ba \rangle_{gr} = \langle a, b \mid aba^{-1}b^{-1} \rangle.$$

Think of a as (1,0) and b as (0,1).

Definition

A group G is finitely presented (f.p.) if it is given by a finite presentation

$$\langle a_1,\ldots,a_n \mid r_1,\ldots,r_m \rangle.$$

António Malheiro

Decision Problems in Algebra

The word problem

Given a f.p. group G, we have

Word problem for G

Find an algorithm with

input: a word w in the generators of G

output: YES or NO, according to whether w represents the identity in G.

More difficult:

The uniform word problem Find an algorithm with input: a f.p. group G, and a word w in the generators of Goutput: YES or NO, according to whether w represents the identity in G.

Independence

The word problem is independent of the given f.p.

G has solvable word problem with respect to $\langle a_1, \ldots, a_n \mid r_1, \ldots, r_m \rangle$ iff *G* has solvable word problem with respect to $\langle x_1, \ldots, x_k \mid s_1, \ldots, s_p \rangle$.

Proof: Tietze transformations

Consider the group K given by the presentation $\langle a, b | abab^{-1} = 1 \rangle$. We can transform the presentation by adding generators

$$\langle a,b,x,y \mid abab^{-1} = 1, \ x = ab, \ y = b^{-1} \rangle.$$

Introducing/deleting relations which are consequence of the others:

$$\langle a,b,x,y \mid x^2y^2 = 1, \ x = ab, \ y = b^{-1}, \ a = xy \rangle.$$

Also delete generators: $\langle x, y \mid x^2 y^2 = 1 \rangle_{gr}$.

Word problem for the free group F_n : $\langle a_1, \ldots, a_n | \rangle_{gr}$.

The word problem for F_n is decidable

For a word w in the generators:

- Compute the reduced word \overline{w} ;
- **2** Check if \overline{w} is the empty word.

Example (The free group on 2 generators)

Let $w = abab^{-1}a^{-1}aba^{-1}b$.

Iteratively delete factors of the form aa^{-1} , $a^{-1}a$, bb^{-1} and $b^{-1}b$. We get

$$w = abab^{-1}\underline{a^{-1}}\underline{a}ba^{-1}b \to aba\underline{b^{-1}}\underline{b}a^{-1}b \to ab\underline{a}\underline{a^{-1}}b \to abb,$$

and so $\overline{w} = abb$ is reduced. Since $abb \neq 1$ we conclude that w does not represent the identity.

Word problem for D_3

Consider the presentation of D_3 : $\langle a, b \mid a^3 \to 1, b^2 \to 1, ab \to ba^2 \rangle$.

The word problem for D_3 is decidable

For a word w in the generators $\{a, b\}$:

• Compute the reduced word \overline{w} such that $w \xrightarrow{*} \overline{w}$;

2 Check if \overline{w} is the empty word.

Example (The free group on 2 generators) Let $w = a^2b^2a$. Compute $w = a^2\underline{b}^2a \rightarrow a^3 \rightarrow 1$, or $w = a\underline{a}\underline{b}ba \rightarrow \underline{a}\underline{b}a^2ba \rightarrow ba^4ba \rightarrow \underline{b}\underline{a}ba \rightarrow \underline{b}^2a^3 \rightarrow a^3 \rightarrow 1$, so $\overline{w} = 1$, and we conclude that w represents the identity.

Why does it work? See last session.

Fundamental Dehn's decision problems

In 1911 Dehn proposed the following decision problems for f.p. groups:

The Word Problem

The Conjugacy Problem

Find an algorithm with

input: words x, y in the generators of Goutput: YES or NO, according to whether xand y are conjugate in G (i.e., exists $q \in G$ s.t. $x = qyq^{-1}$).

Max Dehn

The Isomorphism Problem

Find an algorithm with

input: f.p. $\langle X | R \rangle$ of G, and $\langle Y | S \rangle$ of H;

output: YES or NO, according to whether G and H are isomorphic.

António Malheiro

Decision Problems in Algebra

June 2018

10 / 19

Dehn's motivation: surface groups

The fundamental group $\pi_1(T)$ of a topological space T is an invariant.

 $\pi_1(T) = \{ [\gamma] : \gamma \text{ is a loop with base point } x_0 \};$ [γ] - classes of homotopic paths; Paths are homotopic if one can be deformed to the other.

word problem \Leftrightarrow whether or not a loop in T is contractible conjugacy problem \Leftrightarrow whether or not two loops are homotopic

The fundamental group of the Torus Polygonal representation of the Torus:

The fundamental group of the torus $\pi_1(\mathbb{T}^2)$ is presented by $\langle a, b \mid [a, b] \rangle$, where $[a, b] = aba^{-1}b^{-1}$.

 $\pi_1(\mathbb{T}^2) = \mathbb{Z}^2 \text{ has solvable word problem}$ Let $w = baba^{-1}baab^{-3}a^{-2}$. Since $[a, b] = 1 \Leftrightarrow ab = ba$, then $w = (aa^{-1}aaa^{-2})(bbbb^{-3}) = 1.$

Surface groups

An orientable compact surface of genus $g \ge 1$ has fundamental group given by a presentation:

$$\langle a_1, b_1, \ldots, a_g, b_g \mid [a_1, b_1] \cdots [a_g, b_g] \rangle.$$

A nonorientable compact surface of genus $g \geq 1$ has fundamental group given by a presentation:

$$\langle a_1,\ldots,a_g \mid a_1^2\ldots a_g^2 \rangle.$$

Example (The fundamental group of the Klein bottle)

We have seen that $\langle a, b \mid abab^{-1} = 1 \rangle$ and $\langle x, y \mid x^2y^2 = 1 \rangle_{gr}$ define the same group.

Dehn's algorithm

Theorem (Dehn 1912)

For any surface group of genus $g \geq 2$ there exists a Dehn Algorithm.

A group G on the generators A has a Dehn algorithm if:

- there exists a finite list of pairs $(u_1, v_1), \ldots, (u_n, v_n)$ with $|u_i| > |v_i|$; and
- if w is a reduced word representing the identity, then w contains some u_i as a factor.

Dehn's algorithm

Dehn's algorithm to solve the word problem for G

```
Data: a word w in the generators of G
Result: YES (if w = 1) or NO (if w \neq 1)
while w is not the trivial word do
   freely reduce w;
   if some u_i is a factor of w then
      replace that instance by v_i;
   else
      return NO;
   end
end
return YES;
```

Dehn's algorithm: example

Consider the double torus:

with fundamental group D given by $\langle a, b, c, d \mid [a, b][c, d] \rangle$. The set Δ of all "cyclic permutations" of [a, b][c, d] is a Dehn Algorithm for D.

For example

$$w = a^2 b^{-1} (a^{-1} dc d^{-1} c^{-1})^2 b \to a^2 b^{-1} (b a^{-1} b^{-1})^2 b$$

and $\overline{a^2b^{-1}(ba^{-1}b^{-1})^2b} = 1.$