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Summary Of the course

2/3 — Applications and further consequences of the classification
theorem and Euler - Poincaré characteristic

- Complexes and the Euler-Poincaré characteristic
The deficiency theorem for Complexes with convex polygons

- regular complexes ;
- colourings
- Graph embeddings



Complexes on a surface

Polygon is a set of points homeomorophic to a disc with a finite number
of points marked on the boundary. The points on the boundary are the
vertices and the arcs between the points the edges of the polygon.

Complex on a surface — a mosaic of a (finite) number of polygons covering the
surface (or decomposition of the surface into polygons), such that:

(C1) Each polygon has at least 3 edges .

(C2) Polygons either do not meet or meet along a commun edge orin a
commun vertex

(C3) Each edge is the intersection of exactly 2 polygons

(C4) Each vertex is the meet of at least 3 edges.

The faces of the complex are the polygons.

Examples: triangulations, convex polyhedra as complexes on the sphere,
examples on plane models.



Complexes on a surface

Theorem (Euler-Poincaré formula for complexes)

Let C be afinite complex on a surface S. Consider:

f = n2 of faces (polygons) of C
e = n? of edges of C
v =n? of vertices of C

Then v-—e+f = x(S8)=x(C) the E-P characteristic of C.

Idea of the proof.

Proposition :

Every complex C has a dual complex C*.
v¥=f , f*=v and e*=e

Examples



Euler-Poincaré characteristic, a Theorem of Descartes, and
Gauss-Bonnet Theorem

Polihedron —a complex whose faces are convex polygons and has E-P characteristic 2.

Deficiency of a polyhedron P at a vertex V: def(V)= 2m- % angle(F, )

F face that contains V

Descartes Theorem : > def(V)=4nm

V vertex of P

Generalizes to every complex C whose faces are convex polygons : > def (V)= 2m x(C)
(proved) V vertex of P

A discrete version of Gauss-Bonnet theorem: [ K dA =2m x(S), K- Gaussian curvature



Regular Complexes on a surface

A regular complex is a complex C whose vertices all have the same degree d and whose
faces all have the same number of edges d*.

From Euler-Poincaré formula regular complexes on the basic surfaces S,P, T and K must
verify: (deduced from : dv=2e, d*f=2e and v-e+f = v(1-d/2 +d/d*)=x(C) )

On S: (d,d*)=(3,3),(3,4), (3,5), (4,3),(5,3) .
On P . (dld*) = (313)1 (3’4)7 (315) ’ (413)1 (513) °
OnT: (d,d¥)=(3,6),(4,4)(6,3) .

On K: (d,d¥)=(3,6), (4,4), (6,3)

Are all these pairs realizable as complexes?



Regular Complexes on a surface

On S: all are realizable:
(d,d*)=(3,3) tetrahedron, (3,4) cube, (3,5) dodecahedron,
(4,3) octahedron, (5,3) icosahedron.

On P: (d,d¥)={3:3}43:4}-(3,5), {4:3}, (5,3).

OnT: (d,d*)=(3,6),(4,4),(6,3). Infinite families of complexes in each case

On K +—3;6);—{4;4),—+{6;3)—Coxeter, Moser 1965



Exercise 5: a)In order to obtain a complexe of P with (d,d*)=(5,3) draw the dual of the complex
Cis5) (P), represented above.

b) The existence of infinite families of regular complexes on T with (d,d*)= (4,4), (3,6) or (6,3).



Day 3



Recalling: Complexes on a surface

Complex on a surface — a mosaic of a (finite) number of polygons covering the surface
(or decomposition of the surface into polygons), such that:

(C1) Each polygon has at least 3 edges.

(C2) Polygons either do not meet or meet along a commun edge or in a commun vertex
(C3) Each edge is the intersection of exactly 2 polygons

(C4) Each vertex is the meet of at least 3 edges.

The faces of the complex are the polygons.

Theorem (Euler-Poincaré formula for complexes)

Let C be a finite complex on a surface S. Consider:

f = n2 of faces (polygons) of C
e = n? of edges of C
v =n?2 of vertices of C

Then v—-e+f = x(S)=x(C) the E-P characteristic of C.




Colourings of complexes (maps) on surfaces

A colouring of a complex on a surface is an assignement of a colour to each face so
that adjacent faces have different colours.

A complex is N-colourable if it can be coloured with N colours.

Given a surface S we denote by N(S) the minimum number of colours needed
to colour ANY(every) complex on S.

The 4-colour conjecture (Guthrie, 1870 ): 4 colours are enough to colour any complex on the
sphere.

Proved computationally 1970’s Appel and Hanken, 1990’s Robinson and Seymour

The Heawood conjecture (Heawood, 1890 ): For every compact surface S
N(S):=[(7 + +/49-24%(S5))/2 ]

Proved true except for the Klein bottle (whose colouring numberis 6, not 7) in the late
1960’s by Ringel and Young

x | 2 | 1 0 | 1| 2 | 3 | 4 | 5
7 7 8 9 9 10

N(S) 4 6



How Heawood arrived to his conjecture

Observation 1) The average of the number of edges per face of a complex C(S), 2e/f, must be related to the
number of colours needed to colour C(S).

Observation 2) There is un upper bound for the average number 2e/f depending exclusively on the surface:
2e/f< 6(1-x(S)/f)

Observation 3) If N is a natural number such that 2e/f <N for every map on the surface S then, every map on
the surface S is N-colorable and therefore  N(S)< N.

Theorem (Heawood 1890)
1) Every complex on the Sphere or Projective plane is 6-colorable.
2) Every complex on the Torus or Klein bottle is 7-colorable.

3) Every complex on a surface S of negative Euler characteristic can be coloured with

N(S)<[(7 + +/49-24%(S))/2 ] colours.



some further topics on Combinatorics and Topology of surfaces

Graphs embeddings: Given a graph G=(V,E) find a minimal surface for G is the orientable surface
S, with maximum X(S)=Y(G) , where G can be “drawn” so that the edges only meet at commun
vertices.

Theorem (Kuratowski 1930’s): a graph G is planari.e. can be embedded in the sphere or in the plane iff
contains no subgraph isomorphic to a subdivision of Ky or Kjj

Theorem (Steinitz 1930’s): a graph G is the skeleton of a 3-dimensional convex polyhedron iff itis 3-
connected.

Theorem (Ringel, Young 1960’s) (relevant for Ringel, Young’s proof of Heawood conjecture by )
1) Y(K, )= 2[n(7-n)/12]
2) Y(K,,)= 2[(m+n+ mn/2)/2]

Theorem (Robinson-Seymour 19590’s ): There is a finite number of minimal graphs to exclude for
embeddability in any surface.



Exercise 5: Prove that in order to colour the regular complex C5 5 (P) of the projective
plane one needs 6 colours.
This remark together with Heawood Theorem implies that N(P)=6.

Exercise 6: Draw the complete graphs K. embedded in the torus.
Note that by Ringel Theorem K, and K, can also be embedded in the torus. Try !



Two nice problems on planar graphs:

Sylvester problem (for more on this game see [ IS] ): Consider a finite set of points in the plane,
not all in the same line. Prove that there is one line that contains exactly 2 of the given points.

Game of sprouts , see [WW)] ): For 2 players playing alternately:
Draw N points(dots) in the plane.

Each player draws at his turn a curve connecting two spots, or a spot to itself without crossing
curves already drawn. Once the curve is drawn a new spot is placed on that curve.

No spot may have more then three lines ending at it.
The player that cannot play looses.

Prove that the game ends at most in 3N-1 moves and lasts at least 2n moves

Winning strategies? (the game may be played on any surface not just in the plane!)



Overview of the course
1) Compact surfaces as plane models — labelled polygons/words

Elementary transformations/ connected sum of surfaces
Classification theorem 1 - reduction to a normal word W,_
definition of the E-P characteristic of a word x(W)
Classification theorem 2 - W + x(W)

2) Compact surfaces as complexes C

the E-P charactheristic ¥(C):= v—e+f =the E-P characteristic of any plane model of C.
dual complex C*

Generalization of the deficiency theorem of Descartes for convex polihedra to complexes
whose faces are convex plane convex polygons, a discrete version of Gauss- Bonnet theorem.

3) Problems that can be attacked with topological methods

(finite) Regular complexes of surfaces with x(C)20
Colourings of complexes -4 colour and Heawood conjectures.
A relevant topic in topology/combinatorics: Embedding graphs on surfaces

Two nice problems on planar graphs



4) Surfaces and the fundamental group — Algebraic topology

Poincaré: in order to get information about the topology of a surface e.g. ( d-dimensional
manifold), study the loops (closed walks) starting and ending at a point (any point) in the surface.

The fundamental group n(S) of a d-dimensional manifold is a group generated by loops that
are not equivalent, i.e. that can not be continuosly transformed one into the other within the
surface (k- manifold).

For a compact surface S we get a presentation of its fundamental group , n(S), directly from
any plane model/ word W. Different word models describe isomorphic groups.

Poincaré conjecture : The sphere S3 of dimension 3 is the unique compact 3-dimensional
manifold with trivial fundamental group.

(W. Thurston 70’s, R. Hamilton 80’s , proved by G. Perelman 2006)

See the page of the Millenium Problem of the Clay Institute:
http://www.claymath.org/millennium-problems/poincaré-conjecture
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