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A cautionary note

These slides are an incomplete account of the investigations. More details were given only on
the blackboard. However, using the references you should be able to reconstruct the missing
parts.
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A tentative Plan

■ Lecture 1: One body disappears

Going in circles

■ Lecture 2: Prison Break

One body is found

■ Lecture 3: It all ends in the Spring
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LECTURE I.
The Kepler Problem and the Two Body Problem

From Newton’s Second law of Dynamics

F = ma (a = ẍ)

plus Newton’s universal law of gravitation

F = −λ
x

|x| , λ = |F | = GMm
1

|x|2

we obtain:

The Kepler Problem (KP)

ẍ = −GM
x

|x|3 , x ∈ R
3 \ {0}

almost.....this is an approximate model!
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2BP

Two body problem (2BP):

(x,m1), (y,m2), x 6= y ∈ R
3

ẍ = −Gm2
x− y

|x− y|3 , ÿ = −Gm1
y − x

|y − x|3
Center of mass of the system:

C(t) =
m1

m1 +m2

x(t) +
m2

m1 +m2

y(t)

C̈ = 0 =⇒ C(t) = αt+ β, α, β ∈ R
3.
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2BP: looking at the system from its center

Setting
x̃ = x− C(t), ỹ(t) = y − C(t),

we have C̃(t) = m1

m1+m2
x̃(t) + m2

m1+m2
ỹ(t) = 0 , so that

m1x̃+m2ỹ = 0

Then
x̃ = −m2

m1
ỹ, ỹ = −m1

m2
x̃

and substituting in

ẍ = −Gm2
x− y

|x− y|3 , ÿ = −Gm1
y − x

|y − x|3 ,

we have a decoupled system of two KPs!

¨̃x = − Gm3
2

(m1 +m2)2
x̃

|x̃|3 ,
¨̃y = − Gm3

1

(m1 +m2)2
ỹ

|ỹ|3

6 / 36

New solutions from old ones: symmetries

If x(t) is a solution of (KP) then

■

t → x(−t)

is also a solution
■ if R ∈ M3 is an orthogonal matrix (RtR = I) then

Rx(t)

is also a solution. In particular rotating a solution (R ∈ SO(3), detR = +1) we still get a
solution

7 / 36
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Some conserved quantities of (KP)

The energy:

E =
|ẋ|2
2

− 1

|x|
The angular momentum

h = x ∧ ẋ

The conservation of h implies that given a solution for which h(0) 6= 0 we can choose a
coordinate system where h points in the positive x3 direction (then h = (0, 0, |h|)) and
introduce polar coordinates in the plane of the solution. Then

x(t) = r(t)(cos θ(t), sin θ(t), 0)

|h| = r2(t)θ̇(t)

Next result deals with solutions such that h 6= 0.

8 / 36

Velocity circles and orbits: a theorem by Hamilton (from Milnor’s arti-
cle)

Theorem (Hamilton, 1846)

As t varies, the velocity vector v = dx
dt

= ẋ moves along a circle C which lies in some plane
containing the origin O.

Any such circle can occur and this ”velocity circle” together with its orientation determines the
orbit x = x(t) uniquely

The corresponding orbit is:

■ an ellipse if O is inside the velocity circle
■ a parabola if O is on the velocity circle
■ an hyperbola if O is outside the velocity circle

9 / 36
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We’re losing time...

From the conservation of the angular momentum we deduce that the function t → θ(t) is a
diffeomorphism (between open intervals) and that its inverse t = t(θ) satisfies

dt

dθ
=

r2(t(θ))

|h| .

We denote by:

r(θ) = r(t(θ)), x(θ) = x(t(θ)) = r(θ)(cos θ, sin θ, 0), v(θ) = v(t(θ))

10 / 36

The velocity circle

Then, from
dv

dt
= − x

|x|3
we get

dv

dθ
= R(− cos θ,− sin θ, 0), R =

1

|h|
Integrating we get

v(θ) = R(− sin θ, cos θ, 0) + c

Note that

■ v(θ) belongs to a circle with center c and radius R
■ x(θ) ⊥ v(θ)−c

11 / 36
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Velocity circle (with ǫ < 1)

Figure 1: Without loss of generality, we can assume c=(0, c, 0) with c > 0. Then,

C: v(θ) = R(− sin θ, cos θ + ǫ, 0) where R = 1
|h| and ǫ = |c|

R
. In the figure ǫ < 1
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Feynman’s proof that the orbits are ellipses

Figure 2: the velocity circle is rotated of −π
2
and the vertex of the angle is translated to the

origin

13 / 36
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Feynman’s proof that the orbits are ellipses

Figure 3: The trajectory is then suitably rescaled: x(θ) belongs now to the perpendicular
bisector of v(θ)⊥. The Geogebra file ”Feynman’s construction of the ellipse” shows how it works
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Back to Milnor’s paper: solutions of (KP) are contained in conic sections

|h| = |x(θ) ∧ v(θ)| = |r(cos θ, sin θ, 0) ∧ R(− sin θ, ǫ+ cos θ, 0)| =
= rR(1 + ǫ cos θ)

r = r(θ) =
|h|2

1 + ǫ cos θ
, 1 + cos θ > 0

polar equation of a conic section with eccentricity ǫ and a focus at O. θ = 0 corresponds to
the closest approach to the focus (pericenter)

15 / 36
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À la recherche du temps perdu

Given c and R, we know

ǫ =
|c|
R

and |h| = 1

R

so that

r(θ) =
|h|2

1 + ǫ cos θ

is uniquely determined. To show that any conic gives a solution of (KP) we go back, retracing
our steps and defining the t variable as

t = t(θ) =
∫ θ

0

r2(φ)

|h| dφ.

Considering the inverse function θ = θ(t) a computation shows that

x(t) = r(θ(t))(cos θ(t), sin θ(t), 0)

satisfies (KP)

16 / 36

Energy along an orbit

Computing the energy

E =
|v|
2

− 1

|x|
at θ = 0 and recalling that ǫ = c

R
and R = 1

|h| we get

|v(0)| = (c+R)2

|x(0)| = |h|2
1 + ǫ

=
1

R(1 + cR)

so that

2E = c2 − R2 =
1

|h|2 (ǫ
2 − 1)

We conclude

■ E < 0 ⇐⇒ the orbit is elliptic
■ E = 0 ⇐⇒ the orbit is parabolic
■ E > 0 ⇐⇒ the orbit is hyperbolic

17 / 36
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Elements of an ellipse and energy. Kepler’s third law

Elements of the ellipse:

2a = rmin + rmax =
|h|2

1− ǫ2

b = ymax =
|h|2√
1− ǫ2

= a
√
1− ǫ2

2E =
1

|h|2 (ǫ
2 − 1) = −1

a

From Kepler’s second law, the period T satisfies

Area of the elipse= πab =
|h|
2
T

so that we have Kepler’s third law:
T = 2πa

3

2
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LECTURE II.
(KP): The associated vector field

(KP) is equivalent to the first order system

(KPs) ẋ = v, v̇ = − x

|x|3

with (x, v) ∈ Ω := (R3 \ {0})×R
3

The vector field

F (x, v) =

(

v,− x

|x|3
)

is smooth on Ω =⇒ for any t0 ∈ R, (x0,v0) ∈ Ω there exists only one solution of (KP )s
such that x(t0) = x0, v(t0) = v0, defined on a (maximal) interval J =]α, ω[. Solutions are
invariant for translations in time. If (x(t), v(t)) solve the previous Cauchy problem, on J, then
(x(t− t0), v(t− t0)) solve the system with x(0) = x0, v(0) = v0 on J − t0

19 / 36
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Going global

Theorem Solutions with h(0) = x(0) ∧ v(0) 6= 0 are defined on R.

Consequence of the following result from the general theory of ODEs

Theorem (Escape from Compact Sets) Consider the differential equation

X ′ = F (X),

where F : Ω ⊂ R
n → R

n is continuous and Ω is open. If a maximal solution
X = X(t), t ∈]α, ω[ verifies ω < +∞, then one of the following alternatives holds:

■

|X(t)| → +∞ as t → +ω

■ there exists a sequence of points tn → ω such that

dist(X(tn), ∂Ω) → 0

20 / 36

Going global, periodically

The fact that a solution with nonzero angular momentum and negative energy (elliptic orbit) is
actually time periodic is guaranteed by the following general result:
Theorem Consider the differential equation

X ′ = F (X),

where F : Ω ⊂ R
n → R

n is locally Lipschitz continuous and Ω is open. If a solution
X : [0, p] → R

n satisfies
X(0) = X(p)

then its maximal domain is R and the corresponding extension is p periodic.

21 / 36
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Kepler’s equation: the importance of being eccentric

Figure 4: A suitable parametrization of the ellipse
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Kepler’s equation: the importance of being eccentric

Using the eccentric anomaly u to parametrize an elliptic orbit we get:

x = (x1, x2) = a(cosu− ǫ,
√
1− ǫ2 sin u)

Since
|h| = x1ẋ2 − x2ẋ1

along a solution u(t) satisfies

a2
√
1− ǫ2(u̇− u̇ǫ cosu) = |h|

Integrating from t0 such that u(t0) = 0

u− ǫ sin u =
|h|

a2
√
1− ǫ2

(t− t0)

which leads to Kepler’s equation

u− ǫ sin u =
2π

T
(t− t0)

23 / 36
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Solving Kepler’s equation with the help of Newton

Fixed any time t, we want to solve

fǫ(u) = u− ǫ sin u =
2π

T
(t− t0)

Let ξ = 2π
T
(t− t0) be fixed. It is sufficient to consider ξ ∈]0, π[

The equation
fǫ(u) = u− ǫ sin u = ξ

can be efficiently solved using Newton’s method:

un+1 = un −
fǫ(un)− ξ

f ′
ǫ(n)

starting from a suitable u0. What does it mean ’suitable’? One can prove that:

Newton’s method converges to for any u0 such that u1 ∈ [0, π]

24 / 36

Solving the Kepler equation with the help of Bessel

fǫ(u) = u− ǫ sin u =
2π

T
(t− t0)

Let ξ = 2π
T
(t− t0).

Since fǫ is strictly increasing and such that fǫ(u)− u is 2π periodic and odd, there exist an
inverse function u = Kǫ(ξ) with the same properties.
Then we can develop Kǫ(ξ)− ξ in Fourier series:

Kǫ(ξ)− ξ =
∞∑

n=1

bn sin nξ

with

bn =
2

π

∫ π

0
(Kǫ(ξ)− ξ) sinnξ dξ

25 / 36
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Solving the Kepler equation with the help of Bessel

bn =
2

π

∫ π

0
(Kǫ(ξ)− ξ) sinnξ dξ

Integrating by parts

bn =
2

nπ

∫ π

0
K ′

ǫ(ξ) cosnξ dξ

By the change of variables u = Kǫ(ξ) since u− ǫ sin u = ξ we get finally

bn =
2

nπ

∫ π

0
cosn(u− ǫ sin u) du =

2

n
Jn(nǫ)

where the Bessel function of order n ≥ 1 is defined by

Jn(x) =
1

π
cos(nu− x sin u)

26 / 36

Solving the Kepler equation with the help of Bessel

Kǫ(ξ) = ξ +
∞∑

n=1

2

n
Jn(ξ) sinnξ, ξ ∈ R

ξ =
2π

T
(t− t0)

From here we get an ”explicit” formula for elliptic movements (when the ellipse lies in the plane
(x1, x2) and the major axis lies on the x1 axis:

x1(t) = a(cosu(t)− ǫ), x2(t) = a
√
1− ǫ2 sin u(t)

u(t) = ν(t− t0) +
∞∑

n=1

2

n
J(nǫ) sinn[nν(t − t0)], ν =

1

a3/2

To recover the position of a planet in R
3 at a given time one has to consider the position of its

orbital plane with respect to the plane containing the orbit of the Earth, and then the
inclination of the major axis of the orbit of the planet in its plane. This is done introducing
astronomical coordinates, which are Euler’s angles.

27 / 36
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LECTURE III.
On a collision course....no Bruce Willis will save us

Considering a suitable coordinate system, a fixed rectilinear solution (h = 0) satisfies the scalar
equation

ẍ1 = − 1

x2
1

There are three types:

■ ejection-collision: defined on a finite interval ]t0, t1[ with

(ejection) lim
t→t+

0

x1(t) = 0, lim
t→t+

0

ẋ1(t) = +∞

(collision) lim
t→t−

1

x1(t) = 0, lim
t→t−

1

ẋ1(t) = −∞

■ ejection-escape: defined on a half line ]t0,+∞[ with limt→+∞ x1(t) = +∞
■ capture-collision: reverse time in the previous class

28 / 36

Spring is coming....

Consider the equation

(H) ẍ = − k

m
x, x ∈ R

2

of a point mass m subjected to a the force corresponding to a Hookean spring.
In what follows we set k

m
= 1

(H) is actually a system of two uncoupled linear oscillators.

As for the (KP), the angular momentum of the solutions of (H) is conserved (it’s a central
force field), rotating a solution we still obtain a solution, and the same occurs reversing time.

Theorem 1 Trajectories of Hooke’s equation with nonzero angular momentum are ellipses

centred at O. Moreover any such motion is the sum of two circular motions with angular

velocities +1 and −1

29 / 36
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This is not an epicycle!

Proof: W.l.g. we can write any solution in the form

z(t) = peit + qe−it, p > q ≥ 0

Figure 5: ellipse with center at the origin O and foci at ±2
√
pq a = p + q, b =

p− q, ǫ =
2
√
pq

p+q

30 / 36

Squaring an ellipse...Wait, what?

Lemma If z(t) is an Hookean ellipse, then w(t) = z2(t) is an ellipse with a focus at the origin
O

Proof

z2(t) = p2e2it + q2e−2it

︸ ︷︷ ︸
+2pq

ellipse centred at O with foci at ±2pq

31 / 36
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The times they are a-changing

w(t) does not satisfy the law of the areas. The angular momentum of w(t) is

2θ̇(t)|w(t)|2 = 2|h||z(t)|2,

and is not constant. However, we have the following result:

Theorem Suppose a point in the z complex plane moves according to Hooke’s law

z̈ = −z

. We square z and introduce in the trajectory of the point

w = z2

a new time τ so that the law of areas is satisfied. Then w̃(τ) satisfies the (KP):

d2w̃

dτ 2
= −4EH

w̃

|w̃|3 , EH =
1

2
(|ż|2 + |z|2)

32 / 36

Proof

We introduce the new time τ such that, if

w̃(τ) = |z(t(τ))|2e2iθ(t(τ))

then

2
dθ

dt
(t(τ))t′(τ)|z(t(τ))|4 = constant

Since dθ
dt
|z|2 = constant, we must require

t′(τ) =
c

|z(t(τ))|2

so that, choosing c = 1

τ ′(t) = |w(t)|2, τ = τ(t) =
∫ t

0
|w(s)|2 ds

33 / 36
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Proof

The computations are the following, where z̃(τ) = z(t(τ)):

w̃′(τ) = 2z̃ż(t(τ))t′(τ) = 2
ż
¯̃z

w̃′′(τ) =
2

z¯̃z

(

− 1

(¯̃z)2
˙̃̄zż +

z̈
¯̃z

)

=
−2

z̃(¯̃z)3
(| ˙̃z|2 + |z̃|2) =

= −4EH
z̃2

| ˜(|z̃|2)3
= −4EH

w̃

|w̃|3
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A final mystery

The previous construction can be inverted, and the corresponding transformation is called
Levi-Civita transformation. Then, there is a bijection between the solutions of (KP) and the
ones of (H). In particular, the elliptical solutions of (KP) with equal energy EKP correspond to
elliptical solutions of (H) with equal energy EH and vice-versa.

What happens in the limit when we consider a continuous family of solutions of (KP) with fixed
energy E = − 1

2a
and whose angular momentum tends to zero?

The ellipses (of fixed axis 2a) degenerate in a segment (of length 2a) containing the singularity
as an endpoint. This segment corresponds to an ejection-collision solution, defined on a finite
interval.

We pass from solutions defined on R to a solution defined on a finite interval.

Something seems to be lost.....

35 / 36
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The solution in a picture from the ”regularized space”. End of the
investigation

In the ”Hookean space” the corresponding ellipses tend to a segment which has z = 0 as
midpoint and which carries a rectilinear solution z(t) of (H) defined and smooth on R and
which makes symmetric oscillations with respect to z = 0

The ejection-collision solution corresponds to just a segment of this Hookean solution z(t)
(from z = 0 to the maximum distance from 0 and back). When z(t) crosses z = 0 and
describes the second half segment of its orbit, w(τ) = z2(t(τ)) describes a second ejection
collision orbit on the same segment of the previous one in the (KP) space.

Then, z(t) corresponds to an orbit w(τ) obtained gluing ejection-collision solutions according
to a ”reflection rule”: after collision at time τ−0 with velocity −∞ the particle is ejected at time
τ+0 with velocity +∞ and with the same energy.

This generalized solution (which actually belong to W 1,2(0, 2πa
3

2 ) is defined on R and can be
thought of as the ”true” limit of the solutions with fixed negative energy considered above

36 / 36
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